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Despite the increasing sophistication of biomaterials design and
functional characterization studies, little is known regarding cells’
global response to biomaterials. Here, we combined nontargeted
holistic biological and physical science techniques to evaluate how
simple strontium ion incorporation within the well-described bio-
material 45S5 bioactive glass (BG) influences the global response
of human mesenchymal stem cells. Our objective analyses of whole
gene-expression profiles, confirmed by standard molecular biology
techniques, revealed that strontium-substituted BG up-regulated
the isoprenoid pathway, suggesting an influence on both sterol
metabolite synthesis and protein prenylation processes. This up-
regulation was accompanied by increases in cellular and mem-
brane cholesterol and lipid raft contents as determined by Raman
spectroscopy mapping and total internal reflection fluorescence
microscopy analyses and by an increase in cellular content of phos-
phorylated myosin II light chain. Our unexpected findings of this
strong metabolic pathway regulation as a response to biomaterial
composition highlight the benefits of discovery-driven nonreduc-
tionist approaches to gain a deeper understanding of global cell–
material interactions and suggest alternative research routes for
evaluating biomaterials to improve their design.

strontium-releasing biomaterials | human mesenchymal stem cells |
microarray analysis | sparse feature selection analysis | mevalonate pathway

An important aim of regenerative medicine is to design smart
biomaterials to trigger specific biological responses and

enable complex tissue repair (1). Standard in vitro and in vivo
testing of such materials usually focuses on assessing the antici-
pated cell response, often stem cell differentiation to a particular
lineage and/or appropriate tissue formation. Although this strat-
egy allows the characterization of specific outcomes, the global cell
responses to most biomaterials remain relatively unknown and
their mechanisms of action largely unidentified. In comparison
with this standard approach, the pharmacology and molecular
biology communities have revolutionized their respective fields by
taking advantage of unsupervised “-omic” technologies that allow
the global biological response to be examined without the inherent
bias introduced by predicting particular outcomes. The adoption
of comparable hypothesis-generating holistic approaches in the
biomaterials communities could stimulate a similar paradigm shift,
allowing prospective, rational material design instead of retro-
spective material evaluation.
With more than 2.2 million bone-grafting procedures carried

out annually worldwide, the market for smart biomaterials that
can be used as functional alternatives to current autogenic and
allogenic grafts is significant (2). One biomaterial-based regen-
erative approach involves the incorporation of biologically active
moieties into biomaterials to enhance their bone regeneration
properties (3). Strontium ranelate (SrRan) reduces vertebral and
nonvertebral fractures in osteoporotic women (4, 5). Although
the mechanism of action of SrRan is not fully understood (6, 7),

strontium ions have been reported to be the active component
of the drug. Incorporating strontium into biomaterials has been
shown to up-regulate osteogenic markers in vitro and osteo-
conduction in vivo (8–12); however, how such strontium-doped
biomaterials improve clinical outcomes and, importantly, how
such biomaterials influence the global response of osteoprogen-
itor cells are largely unknown.
To demonstrate this alternative approach of examining cell

response to biomaterials, we applied whole-genome microarray
techniques to the classic biomaterial bioactive glass (BG) after
incorporation of strontium. Combining an atypical method for
recognizing important features in data and Raman spectroscopy
mapping, we examined the global response of bone marrow-
derived human mesenchymal stem cells (hMSC). Surprisingly,
our results show that, rather than directly up-regulating osteo-
genic genes, strontium-substituted BG (SrBG) strongly regulated
the steroid biosynthesis pathway, suggesting a potential mode of
action and an alternative avenue for further study. These data
show the potential for nonreductionist discovery-driven ap-
proaches to transform the design of biomaterials and improve
clinical outcomes, particularly in bone regeneration.

Results
Experimental Design. Upon exposure to biological fluids, BGs
undergo localized dissolution/reprecipitation reactions, modifying
their surrounding ionic environment. To mimic such environments,
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BGs based on the 45S5 composition in which 0, 10, and 100 mol%
of calcium was replaced by strontium (Sr0, Sr10, and Sr100, re-
spectively) were incubated with hMSC growth culture medium and
subsequently filtered to remove BG particles (Fig. S1A), creating
BG-conditioned medium. Inductively coupled plasma optical
emission spectroscopy (ICP-OES) demonstrated that, although
the silicon and phosphate concentrations were similar in all BG-
conditioned medium compositions, strontium concentrations in-
creased with increasing strontium substitution (Fig. S1B).
hMSC from three donors were exposed to SrBG-conditioned

medium for 30 min, 2 h, 4 h, 48 h, 5 d, or 10 d, with medium
refreshed with new conditioned medium over the course of the
experiment. Whole-genome microarray analyses were carried
out, and data were examined using an atypical approach to feature
selection and an objective functional annotation clustering analy-
sis. Further investigations of cell response were performed using
quantitative real-time PCR, Western blotting and in-cell Western
blotting, Raman spectroscopy mapping, and total internal re-
flection fluorescence (TIRF) microscopy.

Regulation of hMSC Gene Expression by BG and SrBG Dissolution
Products. Initial statistical analysis indicated that all BG-condi-
tioned media triggered significant modifications of hMSC mRNA
expression in more than 1,000 genes compared with control (CTL)
growth medium (Fig. 1A). With respect to BG composition, the
total number of genes and particularly the number of highly
significant differentially expressed (DE) genes increased with
increasing strontium substitution, suggesting a more profound
modification of the hMSC expression profile with exposure to
SrBG dissolution products.

To identify key genes involved in the hMSC response, we ana-
lyzed the dataset using an expectation maximization (EM) algo-
rithm. This method of sparse feature selection is an unbiased
approach that is very useful for identifying small sets of relevant
genes in large microarray datasets in a context-dependent manner
by progressively setting the contributions of less relevant genes
to zero (Fig. 1B) (13). We added two extra hyperparameters, χ
and ζ, so that the sparsity of the selection method could be
varied (14, 15).
The EM algorithm method selected a limited set of 11 genes

whose expression patterns were altered significantly in the pres-
ence of SrBG-conditioned medium. In particular, three of the genes
selected by this very sparse selection method acted as clear dis-
criminators between cultures with and without SrBG treatment
across the ranges of Sr2+ concentrations in the experiment (Fig.
1C). These genes were transmembrane protein 147 (TMEM147),
peripheral myelin protein 22 (PMP22), and farnesyl-diphosphate
farnesyltransferase 1 (squalene synthase, FDFT1). TMEM147 is
a transmembrane protein found exclusively in the endoplasmic
reticulum that binds to cholesterol (16) and G protein-coupled
receptors (GPCR) (17). PMP22 (also known as “GAS3”) is a gly-
coprotein associated with lipid rafts (18) that modulates apoptosis,
cell morphology, actin stress formation, and migration (19, 20).
FDFT1 is a key mediator of the isoprenoid biosynthesis pathway
where it catalyzes the first reaction of the branch committed to
sterol biosynthesis. As such, the regulation of FDFT1 directs the
formation of either sterol or nonsterol metabolites (21). Although
differences in cell metabolic profiles during hMSC commitment
and differentiation have been reported previously (22, 23), this
result represented an unexpected finding because both BG and
strontium had been presumed primarily to up-regulate bone for-
mation and/or differentiation of osteoprogenitor cells (7, 24).
To understand better the global expression modifications in

hMSC in response to BG/SrBG treatment, we next applied a
functional annotation clustering analysis to the DE genes. When
comparing SrBG and CTL conditions, we identified a strong regu-
lation of a cluster of genes in the sterol and steroid biosynthesis
pathways (Fig. 1D and Table S1). This cluster showed high en-
richment (enrichment score >10) and significance (P < 10−13) and
was accompanied by several correlated clusters implicated in sterol
and steroid biosynthesis, transport, and homeostasis or fatty acid
biosynthetic and metabolic processes. These features were con-
served among the Sr100 vs. CTL, Sr10 vs. CTL, and Sr100 vs. Sr0
groups. Such clusters were not identified in the Sr0 vs. CTL con-
dition, suggesting that strontium incorporation played a role in this
regulation. Taken together, these results suggest that strontium in
BG has a profound effect on the regulation of the steroid/sterol
biosynthesis and the associated metabolic processes, supporting our
initial finding of the critical role of FDFT1 in response to SrBG.
As has been hypothesized, we also identified the regulation of

genes associated with bone development, osteoblast differentia-
tion, and bone mineralization with SrBG treatment (Fig. 1D and
Table S1). However, the enrichment scores of these clusters
(1.42–1.98) were lower than those described above, and the ex-
pression patterns were similar for all BG treatments with no
differences identified among BG compositions. For example,
hMSC exposed to SrBG medium for 5 d induced up-regulation
of secreted phosphoprotein 1 (also known as osteopontin), gly-
coprotein (transmembrane) nmb, and BMP2 (bone morphoge-
netic protein 2) compared with CTL (P < 0.05, Sr10 vs. CTL)
(Fig. S2). Taken together, these observations suggest that, al-
though genes associated with osteoblast differentiation were in-
deed differentially regulated in response to BG and SrBG, the
effects were subtle and were not strongly affected by strontium. In-
stead, the primary regulators of hMSC response were genes involved
in the sterol and steroid biosynthesis and metabolic processes.

A B

C

D

Fig. 1. Changes in hMSC global mRNA expression mediated by treatment
with BG- and SrBG-conditioned media. (A) Venn diagram depicting the
number of genes differentially expressed (with P < 0.05) in response to BG
and SrBG exposure, compared with the CTL group. (B) Illustration of the
operation of the EM algorithm, showing progressive setting to zero for the
genes least relevant to the SrBG treatment to identify a small set of key genes
(B, 1–B, 4). (C) Table of the most significant discriminators identified by sparse
feature analysis of the hMSC response to treatment with SrBG-conditioned
medium. The contribution, expressed as mean ± SE, is an indication of that
gene’s importance in the model discriminating the effect of the treatment
conditions. Positive values indicate up-regulation in response to SrBG expo-
sure. P values represent the Student’s t test confidence level for each gene’s
contribution to the model. (D) Graphic representation of the functional an-
notation clustering analysis of the genes differentially expressed in response
to Sr100 treatment compared with CTL treatment, highlighting a strong en-
richment score of the sterol–steroid biosynthesis and metabolic processes.
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Up-Regulation of the Mevalonate and Steroid Biosynthesis Pathways
in SrBG-Treated hMSC. Considering that SrBG strongly regulated
sterol and steroid biosynthesis and metabolic process clusters, we
next asked whether the amount of strontium in BG was also a
factor. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses highlighted that, compared with CTL, Sr100
and Sr10 significantly regulated 11 and 13, respectively, of the
13 genes encoding enzymes of the mevalonate pathway and its
downstream steroid biosynthesis pathway (Fig. S3A). These path-
ways mediate cellular processes including sterol–steroid synthesis,
protein prenylation, cell membrane maintenance, and N-glycosyl-
ation (25). Further analyses confirmed similar expression profiles
of the enzyme-coding genes from these two pathways (Fig. 2A and
Fig. S3B), with significant increases in mRNA expression over time
up to day 5 correlating with increasing strontium content in BG.
To confirm these observations, we performed RT-PCR on

representative genes from these pathways after 5 d of exposure
to BG or SrBG (Fig. 2B). The expression of HMGCS1 [3-hydroxy-
3-methylglutaryl-CoA synthase 1 (soluble)], HMGCR (3-hydroxy-
3-methylglutaryl-CoA reductase), FDPS (farnesyl diphosphate
synthase), and SC4MOL (also known as MSMO1, methylsterol
monooxygenase 1) was increased significantly compared with
t = 0 and was significantly higher in all cells treated with SrBG-
conditioned medium than in cells treated with CTL medium.
Interestingly, hMSC exposure to Sr0 similarly triggered a signifi-
cant increase in HMGCS1, HMGCR, and SC4MOL expression.
However, Sr100 significantly up-regulatedHMGCS1 andHMGCR
compared with Sr0, and SC4MOL was significantly up-regulated in

Sr100-treated hMSC compared with Sr0 and Sr10 treatment.
These experiments corroborated the findings from the microarray
dataset, confirming the significant influence of strontium incor-
porated within BG biomaterials on hMSC gene regulation.
Because gene expression does not necessarily correlate with

protein translation, we then sought to evaluate the influence of
the regulation of mRNA expression at the protein level with in-
cell Western blots (Fig. 2C). Although no significant modifica-
tion of the amount of HMGCS1 was detected among the various
conditions, SrBG treatment significantly increased the cellular
content of FDFT1 and geranylgeranyl diphosphate synthase
1 (GGPS1), two key enzymes at the branching point of the
isoprenoid pathway (21, 26, 27). GGPS1, together with FDPS,
mediates the protein prenylation process essential for membrane
attachment of proteins, whereas FDFT1 controls the synthesis of
sterol metabolites, which, after enzymatic modifications, results in
the formation of cholesterol. Although the amount of FDFT1 and
GGPS1 tended to increase in the Sr10 and Sr100 groups, re-
spectively, compared with the Sr0 group, no significant differences
were found between the BG conditions. In accordance with our
gene-expression analyses, these differences in protein expression
suggested that SrBG-conditioned media influenced both the ste-
rol- and nonsterol-committed branches of the isoprenoid pathway.

Enrichment of Cell Cholesterol and Lipid Content After Exposure
of hMSC to SrBG-Conditioned Medium. Given our observations of
dramatic modifications in mRNA and protein expression of
enzymes from the mevalonate and steroid biosynthesis pathways,
we hypothesized that SrBG treatment also would affect cell sterol
metabolite content. Raman spectroscopy is capable of providing
detailed biochemical characterization of live cell cultures and is
similar to the microarray analyses in that it is a nondiscriminate,
unbiased technique (28–30). Therefore, we applied Raman spec-
troscopy mapping to hMSC treated with SrBG-conditioned me-
dium (Fig. 3). The characteristic spectra that were identified by
k-means clustering analysis and represent distinctive cell signatures
were classified as medium and high cholesterol/lipid content, nu-
cleus, or cytoplasm (Fig. 3A and Fig. S4). This Raman spectrum
clustering analysis highlighted clear discrimination between the
experimental conditions. The strongest discriminator proved to be
cell lipid and cholesterol content, an important end product of the
sterol biosynthesis pathway. As shown in Fig. 3 B and C, a signif-
icantly higher percentage of lipid/cholesterol-rich spectra per cell
was observed in hMSC after exposure to Sr100 than after exposure
to CTL medium. These results are in line with our previous
findings and indicate that the up-regulation of the sterol bio-
synthesis pathway triggered an increase in cell sterol metabolites.

hMSC Enrichment of Membranous Cholesterol and Lipid Rafts in
Response to SrBG-Conditioned Medium. Cholesterol is a crucial
component of the lipid bilayer of mammalian cell membranes and
is a key player in the regulation of physical properties such as
rigidity and permeability and of membrane protein clustering and
activity (31). Our observations of up-regulation of FDFT1, which
is known to be related to membrane lipid raft content (26), and
increased cell cholesterol content as determined Raman spec-
troscopy led us to speculate that SrBG biomaterials affected the
cellular production of the cholesterol- and sphingolipid-enriched
membrane microdomains known as “lipid rafts.” Such raft-sig-
naling platforms have been shown to be important for numerous
signaling pathways and cell functions. For example, they regulate
the activity of various GPCRs and ion channels as well as integrin-
and small GTPase-mediated signaling events (32–35).
To explore this possibility, we used TIRF microscopy to visualize

and quantify cholesterol content and lipid rafts at or near hMSC
plasma membranes in response to SrBG treatment. We observed
significantly higher signal intensity of filipin III on the substrate-
facing plasma membrane in hMSC treated with Sr100-conditioned

A B

C

Fig. 2. Regulation of mRNA and protein expression of enzyme-coding
genes from the mevalonate and steroid biosynthesis pathways by SrBG-
conditioned media. (A) Expression profiles of selected genes representative
of various stages of the mevalonate and sterol–steroid biosynthesis path-
ways, showing an increase of mRNA expression levels over time and with
increasing amounts of strontium within the BG. Data were extracted from
the microarray dataset. (B) HMGCS1, HMGCSR, FDPS, and SC4MOL mRNA
expression, relative to t = 0, in hMSC after 5 d of culture in the presence of
CTL or BG-conditioned media quantified by real-time PCR validating the
results obtained by the microarray analysis. The 5-d exposure period was
chosen based on microarray analyses, because hMSC displayed the strongest
differential gene expression in response to the treatments at this time point.
(C) Protein levels of HMGCS1, FDFT1, and GGPS1 normalized to DNA content
and relative to the CTL group (dashed line) after 5 d of treatment measured
by in-cell Western blotting. All data are expressed as mean ± SD, n = 3. In B
and C, asterisks and daggers represent significant differences of the marked
bars compared with the CTL group and compared with Sr100 treatment,
respectively (*P < 0.05; **P < 0.01; ***P < 0.001; †P < 0.05; ††P < 0.01). n.s.,
no significant differences between the SrBG groups and Sr0.
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medium than in hMSC treated with either Sr0 or CTL medium
(Fig. 4 A and B). Filipin III binds nonesterified sterols and is
used for the identification of cellular cholesterol (36). To
investigate further an effect of SrBG treatment on lipid raft
formation, we used FITC-conjugated cholera toxin B subunit
(CTB), which has been reported to bind specifically to lipid rafts
and is commonly used for their identification (37). CTB analyses
by TIRF revealed significantly higher staining intensity in hMSC
exposed to Sr100 than in hMSC exposed to CTL (Fig. 4 C and
D). Taken together, these experiments indicate that the forma-
tion of plasma membrane lipid rafts is affected by exposure to
SrBG-conditioned medium. Given the broad cell-signaling impli-
cations of lipid rafts (35), this observation opens the intriguing
possibility that these particular cell-biomaterial responses may be
mediated by changes in the cell plasma membrane.

Increase in the Amount of Phosphorylated Myosin II Light Chain in
SrBG-Treated hMSC. Lipid raft-regulated signaling cascades are
modulated through interactions with the actin/myosin meshwork
(32, 38). The communication between the cytoskeleton and lipid
rafts is ensured by the presence of several membrane skeleton
proteins such as actin, tubulin, or myosin II (38, 39) within these
cholesterol-rich domains and is modulated by small GTPases that
are targeted to the membrane as a result of FDPS/GGPS1-medi-
ated prenylation. The increase in lipid rafts and FDPS and GGPS1
expression observed in response to SrBG led us to investigate
whether SrBG-conditioned media may modulate hMSC actin/
myosin activity further. We quantified the cellular content of the
active phosphorylated form of myosin II light chain (pMLC) by
Western blotting after hMSC exposure to BG or SrBG for 5 d (Fig.
4 E and F). Densitometry analyses of pMLC revealed a systematic
increase in pMLC content in the Sr10 and Sr100 conditions as
compared with the CTL and Sr0 conditions. This result suggested
that strontium incorporated within the BG had an effect on the
actin/myosin meshwork, which is already known to be an im-
portant regulator of hMSC commitment (40, 41).

Discussion
Here, we exploited the potency of unbiased, nontargeted ap-
proaches to investigate how changes in the local cellular envi-
ronment triggered by strontium substitution in BG influences
global hMSC response. Cell-culture models based on conditioned
media have been used widely in previous studies (8, 24, 42, 43),
because the local ion content near the material’s surface upon
implantation is likely to affect the cellular response, along with its
surface properties (44). The strontium concentration in SrBG-
conditioned media was dependent on the level of Sr substitution
in BG (0 mM, 0.1 mM, and 1 mM for Sr0, Sr10, and Sr100, re-
spectively). Such concentrations are likely to be clinically relevant,
because the median strontium serum concentration in patients
treated with SrRan is 0.12 mM (4), and 1 mM has been used as
a reference concentration in several in vitro studies (45, 46).
Our whole-genome microarray analyses revealed the influence

of SrBG on hMSC gene expression, with more profound effects
observed in groups treated with higher levels of strontium in the
biomaterial. Subsequent analyses of the array data demonstrated
an increased expression of genes encoding enzymes from the
mevalonate and sterol biosynthesis pathways, suggesting strong
up-regulation of the sterol and steroid biosynthesis and meta-
bolic processes and protein prenylation activity. These differences
were translated to the protein and cellular levels as determined by
in-cell Western blot and cholesterol content measurements by
Raman spectroscopy. We observed that, as did Sr10 and Sr100,
Sr0 exerted a mild effect on many processes, suggesting an in-
fluence of the BG-modified ionic environment itself. However,
a correlation between the amount of strontium incorporated

A

C

B

Fig. 3. Raman spectroscopy mapping evidence of increased cholesterol and
lipid content in hMSC treated with Sr100 medium. Raman spectroscopy map-
ping was performed on hMSC treated for 5 d with CTL, Sr0, or Sr100 medium.
(A) Characteristic spectra identified by k-means cluster analysis of cell-distinctive
signatures. Characteristic spectra were classified as nucleus (blue), cytoplasm
(green), medium lipid/cholesterol content (yellow), and high lipid/cholesterol
content (red). Arrowheads mark characteristic differences among spectra (see
Fig. S4 for details). (B) Artificially colored representative images of characteristic
spectra within cells. Colors correspond to the spectra assignment in A. (Scale
bars, 10 μm.) (C) Quantification of the percentage of spectra per cell that are
characteristic of lipid/cholesterol-rich regions (medium and high amounts), cy-
toplasm, or the nucleus. Data are expressed as mean ± SD, n = 4. *P < 0.05.

A B

C D

E F

Fig. 4. Increased cholesterol and lipid raft content at the cell mem-
brane and cellular content of pMLC in response to SrBG treatment.
(A and B) Representative TIRF images (A) and quantification of filipin III
abundance (B) as a marker of nonesterified cholesterol content at the cell
membrane of hMSC treated for 5 d with CTL, BG-, or SrBG-conditioned media.
(C and D) Representative TIRF images (C) and quantification of CTB abun-
dance (D) as a marker of lipid raft content at the cell membrane of hMSC
treated for 5 d with CTL, BG-, or SrBG-conditioned media. (Scale bars, 10 μm.)
In B and D data are presented as box plots and represent analysis of more
than 30 cells per group. *P < 0.05, n = 3. (E and F) Representative Western
blot (E) and densitometry quantification (F) of pMLC cellular content (relative
to GAPDH) in hMSC after 5 d of treatment with BG- or SrBG-conditioned media.
E and F are representative of three independent experiments.
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within BG and the up-regulation of these pathways was supported
by significant differences between the Sr100 and Sr0 treatments.
Interestingly, Sr100 exposure led to changes in the membrane
composition of hMSC as characterized by increases in membrane
cholesterol and lipid raft contents, and treatment of hMSC with
Sr10 and Sr100 further led to an increase of the amount of cel-
lular pMLC. Such effects on plasma membrane composition
and myosin activity were not found in hMSC treated with Sr0,
strengthening the hypothesis that the strontium incorporated
within BG mediates these important physiological changes.
Previous studies assessing the effects of bone-regenerative

biomaterials on gene expression using ChIP arrays often focused
on specific genes or clusters known to play roles in osteogenesis
but were silent on other biological responses. Others have aimed
to identify potential key regulators of cell response to biomaterials
and have provided lists of DE genes (43, 47–49). Although these
studies highlight important possibilities, it remains challenging
to interpret the importance of individual DE genes outside their
biological context or draw conclusions regarding their physio-
logical importance. Here we chose to combine the objectivity of
a functional annotation clustering analysis with a sparse feature
selection approach that allowed the detection of a small number
of biologically significant genes in a context-dependent manner.
More than 1,000 genes were significantly regulated in hMSC
after treatment with SrBG-conditioned medium, making the task
of manually identifying key genes extremely challenging. In con-
trast, the sparse feature selection method produced models that
made biological interpretation simpler because fewer explanatory
variables were required; this method previously has been shown to
outperform the commonly used support vector machine algorithm
(13). The sparse feature selection method unexpectedly identified
genes encoding PMP22, TMEM147, and FDFT1. The up-regu-
lation of the lipid raft-interacting protein PMP22 (18) and the
transmembrane protein TMEM147, which is known to bind to
cholesterol (16), appeared coherent with the changes in mRNA
expression of FDFT1, which controls the synthesis of sterol
metabolites (21) and regulates the lipid raft content of the cell
membrane (26). This finding led us to propose a new hypothesis
regarding SrBG regulation of hMSC based on these pathways,
membrane cholesterol content, and lipid rafts.
PMP22 was previously highlighted in a microarray-based study

as one of the few genes in human osteoblasts up-regulated by
treatment with 45S5 BG-conditioned medium (43), suggesting
that PMP22 plays an important role in both osteoblast and hMSC
response. However, further analyses were not pursued in previous
studies, perhaps because PMP22 failed to fit standard hypotheses
regarding cell response to biomaterials and particularly BG.
Conversely, our sparse selection analysis led us to investigate the
regulation of these genes, directly leading to our discovery of the
regulation the sterol synthesis pathway and subsequent modifi-
cation of membrane cholesterol and lipid rafts in hMSC response
to SrBG. This finding is exciting because lipid rafts are dynamic
microdomains of the plasma membrane that play key roles in
regulating most of the signaling pathways at the cell surface, in-
cluding EGF receptor, Hedgehog, Ras, and integrin transduction
signaling processes (35), that subsequently lead to the modulation
of numerous cell functions (32). These functions are regulated by
the combined influence of cholesterol binding with membrane
proteins, such as GPCR, ion channels, or integrins, and the
control of their segregation/clustering within raft-signaling plat-
forms through actin/myosin cytoskeleton meshwork (32). Com-
munication between raft-signaling platforms and the actin/myosin
cytoskeleton is essential for the modulation of signaling cascades,
and this interaction is mediated by small GTPases (32). The
membrane targeting and subsequent activity of small GTPase
proteins requires an initial prenylation step ensured by FDPS and
GGPS1. Here, we observed that SrBG treatment not only in-
creased lipid raft content but also up-regulated FDPS and GGPS1

mRNA expression and GGPS1 protein expression. This up-regu-
lation indicated a possible modulation of small GTPase-mediated
cell functions, such as cell proliferation, migration, spreading, or
cytoskeleton arrangement (33, 50). For example, phosphorylation
of myosin II light chain, which is essential in actin/myosin mesh-
work activity and cell contractility, is regulated by the rho-family
small GPTases (51) and previously has been reported to be re-
duced after the inhibition of the mevalonate pathway (52).
Moreover, our observation of the increase of active pMLC in the
presence of SrBG appeared consistent with the up-regulation
of the isoprenoid biosynthesis pathway and demonstrated that
strontium incorporation within the BG had an effect on acto-
myosin activity. This last result is particularly interesting because
cytoskeletal arrangement, which is modulated by environmental
calcium and strontium (46, 47), is known to influence hMSC
lineage commitment, particularly during osteogenesis (53), as a
result of the modulation of actin/myosin cytoskeletal contraction
(40, 41, 49), and was found to modulate cell metabolic profiles
(22). Together, our data suggest that the up-regulation of the
mevalonate and sterol biosynthesis pathways in hMSC and sub-
sequent membrane cholesterol and lipid raft enrichment in re-
sponse to SrBG likely change membrane protein quantity or
activity. Along with the increase of myosin II light chain activity
in SrBG-treated hMSC, these effects open the possibility of
further cell-signaling modulations.
Analysis of our array data also highlighted effects, although

notably less pronounced, of SrBG treatment on the expression of
genes involved in osteoblast differentiation, bone development,
and mineralization. Although only a few osteoblastic genes were
differentially expressed, the expression profiles were consistent
with those previously reported in response to modified ionic
environments (42, 47). BMP2, which encodes bone morphogenetic
protein-2, was one of the few genes up-regulated by SrBG and is an
osteoinductive growth factor whose expression has been shown to
increase in response to calcium and strontium (12, 47). Such gene
regulations may suggest a progressive commitment of hMSC to-
ward the osteoblastic lineage in response to SrBG exposure.
Under the conditions tested here, we did not identify statistical
differences between BG compositions in the regulation of oste-
oblast-related genes. However, such results may not be surprising,
because the in vitro effects of soluble strontium (or SrRan) on
osteoblastic activity and gene expression have been shown to be
subtle (46) and difficult to discern from the effects of calcium,
given that both ions affect several similar pathways (7).
In a field in which biomaterials design is increasingly complex,

it is interesting to note that the simple inclusion of an ion, such as
strontium, within a well-characterized material structure can in-
duce important changes in gene expression, metabolic pathways,
and the membrane composition of osteoprogenitor cells. How-
ever, because the mechanisms of action of material-driven bone
regeneration remain to be elucidated, the development of new
biomaterials may prove more efficient with methods that better
probe the true response of cells to materials. As we show here, the
use of objective screening methods can allow the characterization
of global cell responses and are not restricted by a priori
assumptions. With the development of increasingly complex and
active biomaterials, applying such discovery-driven approaches to
study biological responses from various classes of materials may be
beneficial for the rational design of materials for regenerative
medicine applications. The resulting development of in vitro
models that effectively predict the efficacy of biomaterials then
may streamline the translation of the biomaterials with the
highest potential from the bench to the clinic.

Experimental Procedures
Cell Culture. Bone marrow-derived hMSC from three donors were obtained
commercially, expanded, and used independently formicroarray experiments
and subsequent analyses.
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BG- and SrBG-Conditioned Medium. BG particles (0, 10, or 100 mol% sub-
stitution of calcium with strontium) were incubated in cell culture medium for
24 h at 37 °C and then removed.

Microarray Study. hMSCwere treatedwith basal, BG, or SrBGmedia for 30min,
2 h, 4 h, 24 h, 48 h, 5 d, or 10 d. After RNA extraction and sample preparation,
whole genome expression analyses were performed using Affymetrix HuGene
arrays. Data were examined using a sparse feature selection method, func-
tional clustering, and KEGG analyses.

Molecular Biology and Biochemistry. After 5 d, RT-PCR, Western, and in-cell
Western blotting were carried out using standard methods to verify ex-
pression of genes in the isoprenoid pathway (identified by microarray) and
their translation.

TIRF Microscopy. Fixed hMSC were incubated with FITC-CTB or Fillipin III and
imaged on a Zeiss Axiovert 200.

Raman Spectroscopy. Fixed hMSC were mapped on a Renishaw RM 2000. Data
were analyzed in MatLab using a k-means cluster analysis.

Statistical Analyses.A one-way ANOVAwith a post hoc Tukey test was used to
determine significance unless indicated otherwise. Details of the experi-
mental procedures are available in SI Experimental Procedures.
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